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Synopsis 

Various methods are described and compared for the determination of particle size distributions 
(PSD) in the submicron range by a technique known as hydrodynamic chromatography (HDC). Data 
are presented for a series of monodisperse latexes to establish the validity of the Mie theory of light 
scattering in describing the detector optical density signal. Analyses for the PSD involve corrections 
to the experimental HDC chromatograms for the effects of dispersion and are broadly classified as 
integral and numerical methods. Comparisons of calculations are made to chromatograms for 
polydisperse latexes as well as synthetic, discontinuous distributions and show the critical role of 
the optical density-particle size relationship in determining resolution and calculation stability. 
An integral method involving a non-Gaussian form for the dispersion function and a polynomial 
expansion for the chromatogram and an iterative numerical method involving modifications of a 
previously published technique are shown to give the best results for the PSD. The discussion in- 
cludes an analysis of the possibility of improved signal resolution using turbidity in the absorption 
wavelength region and refractive index measurements. The conclusion is reached that increased 
resolution with turbidity is preferable to refractive index measurement since lower particle con- 
centrations can be used. 

INTRODUCTION 

Hydrodynamic chromatography (HDC) is a technique for fractionating col- 
loidal particles according to size, which was first developed by Small1 and offers 
great promise as an efficient means for determining particle size distributions 
in the submicron range. In recent  publication^^-^ calculations and results for 
further experimentation have been presented in terms of a mechanism for par- 
ticle separation. Calculations were based on a model for the convected motion 
of Brownian particles through an equivalent array of capillary tubes which in- 
cludes electrostatic force field effects. The analysis accounts explicitly for all 
the relevant experimental parameters, and the good agreement between calcu- 
lated and measured separation factors means that the model can be used to study 
further effects, such as the determination of conditions for universal calibration 
and the possibility of separating equisized particles of differing ~hemis t ry .~-~  

The ultimate impact of HDC as both an analytic method and a tool for ex- 
perimental studies will rely heavily on the ease and accuracy with which the 
output chromatograms can be converted to particle size and particle size dis- 
tribution. 

The conversion of the HDC output signal can be achieved by either a funda- 
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mental model for ( dispersion or, from a more practical viewpoint, using 
empirical methods ie chromatogram, such as is done in GPC? An attempt 
was made at  the former approach8 using an analysis based on a simplified Taylor 
dispersion model for peak spreading.7 However, the results were only of marginal 
success. A principal shortcoming of the Taylor analysis in the present context 
is that i t  does not account properly for either the hydrodynamic wall effectg or 
the electrostatic forces, both of which lead to non-Gaussian, monodisperse peak 
spreading. Resolution in HDC is such that within a 3-ml volume, particles 
ranging from 90 nm to 360 nm in diameter will 

The present analysis will show that this feature, combined with the non- 
Gaussian peak spreading which also occurs, has a profound effect on the signal 
conversion calculations. Thus, any fundamental analysis needs to account for 
the causes of non-Gaussian dispersion. The Brenner and Gaydos analysisg in- 
cluded dispersion effects and might in principle be extended to account for HDC 
peak spreading; however, the tractability of the calculations would seem doubtful. 
It may also be that, though the capillary tube model affords an excellent expla- 
nation for the single particle residence time behavior, it may be an inadequate 
means for predicting the effects of interstitial flow geometry on dispersion. For 
these reasons, the analyses presented in this paper have centered on methods 
for solving the integral dispersion equation. The discussion will show a com- 
parison of various techniques which have been applied for calculating size dis- 
tributions directly from the HDC chromatogram and will include calculations 
to show the important effect which the form of the output signal function has 
on particle size resolution. 

WEIGHT PERCEM 

Fig. 1. Optical density vs particle weight percent for polystyrene standards at the 254-nm wave- 
length HDC operating conditions. 
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Fig. 2. Comparison between experimental and calculated scattering cross section for polystyrene 

All of the discussion involves data obtained with our current HDC setup on 
several monodisperse polystyrene standards (which have been discussed else- 
where8) and two polydisperse latexes: a neoprene latex supplied by du Pont and 
described elsewhere5 and a polystyrene latex synthesized and characterized in 
our laboratories. Results of comparisons between calculated and measured size 
distributions will be presented for the polystyrene system, to be referred to as 
PS1 in the text. Similar results were found in all cases for the neoprene latex 
and can be found elsewhere.5 The hydrodynamic chromatography unit consists 
of three columns packed with nonporous, spherical beads of a styrene-divinyl 
benzene copolymer. The output signal is optical density of the particle sus- 
pension, measured in a flow-through cell at  254 nm. Complete descriptions of 
the instrument and methods can be found in previous publications.2,8 We begin 
the discussion with an analysis of the applicability of Mie light scattering theory 
to our instrument and considerations involving the column material balance. 

PARTICLE & E E R  , A'@ 

standards. 

DETECTION OF COLLOIDAL PARTICLES 

The general theory of light scattering for nonabsorbing particles developed 
by MielO has been previously applied to the turbidity output signal to compute 
relative amounts of known bimodal latex mixtures.8 However, it has been noted 
in earlier studies of light scattering" that the corona effect and lateral scattering 
can be important sources of photometer measurement error, leading to signals 
differing significantly from Mie theory predictions. In addition, some contro- 
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TABLE I 
Experimental Recoveries of The Monodisperse Polystyrene Standards from the HDC Columns 

Particle diameter. A % Recovered 

880 
910 

1090 
1760 
2340 
3570 

100 
100 
100 
100 
90 
25 

versy exists concerning whether polystyrene particles absorb light at 254 nm.12J3 
These observations suggest the need for an experimental evaluation of the output 
signal behavior. A series of tests were made of the photometric detector with 
concentrations of the various polystyrene standards kept below 0.0015 cm3 sol- 
ids/cm3 solution, a value suggested by the studies of Churchill and co-workerd4 
to avoid multiple scattering. 

For colloidal suspensions which fulfill the conditions of single scattering, the 
relationship between extincted and transmitted light intensity is given by the 
familiar Lambert-Beer law: 

7 = In - = NR,,,x El 
where 7 is the extinction coefficient; I0 and I are the incident and transmitted 
beam intensities, respectively; x is the optical path length; N is the number of 
scattering and/or absorbing colloidal spheres per cm3; and Rext is the extinction 
cross section. Figure 1 shows a plot of the optical density signal, log ( I d I ) ,  at 
various solids concentrations for a series of monodisperse polystyrene latexes 
a t  the detector operating wavelength of 254 nm. The linearity of the optical 
density (T = 2.303 O.D.) with particle concentration establishes the applicability 

42.0 -10.9 -9.9 -0.0 -1.0 -6.7 -6.1 -4.6 -3.6 

DIFFERENCE I N  ELUTION TIBE , HIN 

TURBIDITY VS DIFFERENCE IN ELUTION TIME 
Fig. 3. Chromatogram of a monodisperse polystyrene sample compared to Gaussian functions 

with different u values. Also shown is the curve generated from eq. (9') of the text. 
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Fig. 4. Calculated (-) and experimental (+) chromatogram for the polydisperse polystyrene (PSI) 
sample. Computed chromatogram using five-parameter Hermite expansion. 

of eq. (1) to these data. The slopes of Figure 1 can be used to calculate extinction 
cross sections from the limiting form of eq. (1) a t  low concentrations, which 
reads15 

where c is the weight fraction of colloid, p is the colloid density, and pf is the 
system density. 

The calculations for the extinction cross section of spherical particles are de- 
veloped in detail in several S O U ~ C ~ S . ~ ~ , ~ ~ J ~  For nonabsorbing particles, the ex- 
tinction cross section is equal to the scattering cross section, Rscat, and can be 
written10 

where X is the wavelength of light in the medium; and an and bn are functions 
of the refractive indices of the medium (mz)  and the particles ( m l )  and of the 
ratio (R,IXo) of the particle radius and the wavelength of light in vacuum. Figure 
2 shows a comparison between scattering cross sections calculated from eq. (3) 
(solid line) and the experimental values (points) obtained with the aid of eq. (2). 
Values of ml were calculated from the Cauchy formula for the refractive index 
of polystyrene as a function of X , 1 6  and m2 was obtained from the International 
Critical Tables for water. The close agreement shown negates the possible in- 
strument errors and indicates the applicability of Mie theory for calculating the 
photometer signal. 
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CALCULBTEO PRRTICLE SIZE DISTRIBUTION OF R 
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Fig. 5. Calculated PSD for PSl sample of Fig. 4. Histogram represents PSD from electron mi- 
croscopy. 

RECOVERIES OF POLYSTYRENE STANDARDS 

A material balance to determine the amount of injected sample eluting from 
the columns can be made from the resulting chromatogram when the volume 
and concentration of injected sample are known along with the particle size. 
Integration of eq. (1) over the entire elution volume for a monodisperse sample 
gives 

where NT is the total number of particles eluting; and the integral represents 
the area under the chromatogram, W. The mass of exiting latex can thus be 
calculated after multiplication by the particle density and volume. Table I shows 
the recoveries obtained for different polystyrene sizes. It is seen that for particle 
diameters below 250 nm, recovery is complete; and, for the current setup, size 
distributions will only be valid for systems with particle sizes below about 300 
nm. 

AXIAL DISPERSION AND SIZE DISTRIBUTIONS 

In order to correct an HDC chromatogram for axial dispersion by any math- 
ematical technique, the relationship between the function F(  V ) ,  representing 
the experimental chromatogram, and the function W(y) ,  representing the area 
under the chromatogram due to the species with a mean retention volume y, must 
be first established. For a monodisperse system the chromatogram can be ex- 
pressed as 

F(V)  = W G ( V )  ( 5 )  
where G ( V )  is the normalized instrumental spreading function for the particles. 
For a polydisperse system of n species, F( V )  will be given by a linear summation 
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TURBIDITY VS DIFFERENCE IN ELUTION TINE 
DIFFERENCE I N  ELUTION TIflE . fl IN 

Fig. 6. Experimental (-1 and calculated (+) chromatogram for the PS1 sample using the integral 
of the non-Gaussian kernel and five parameters in the distribution function. 

CALCULATED PFlRTICLE SIZE DISTRIBUTION OF A 
PSDl S W L E  

PRRTICLE D I W T E R  I N  FWSTRORS 

NORMRLILED PRRTICLE SIZE DISTRIBUTION 
Fig. 7. Calculated PSD and measured histogram for PS1 of Fig. 6. 

of the individual species contributions since, at  the concentrations used (0.01% 
by weight), multiple scattering does not occur. Thus, 

where W; and Gj( V )  represent the area and normalized spreading function for 
species j .  The area Wj is related to the number of j particles through eq. (4): 

where Rextj is now the extinction cross section for species j. When the number 
of species is very large, W, can be replaced by a continuous function W ( y )  and 
eq. (6) becomes 
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OIFFERENCE I N  ELUTION TIME . f i IN 

TURBIDITY VS DIFFERENCE IN ELUTION TIME 
Fig. 8. Calculated (+) and theoretical (-) chromatogram of a 1 5 1  by number mixture of 88-nm 

and 176-nm standards using the approach in Fig. 6 and three parameters. 

where C( V,y)  is the normalized spreading function of the component with mean 
retention volume y, referred to as the kernel function. Equation (6’) is the fa- 
miliar axial dispersion equation developed for GPC and is often referred to as 
Tung’s e q ~ a t i 0 n . l ~  As indicated earlier, in the region of low ionic strength 
universal calibration behavior results, and the observed relationship between 
elution volume (or equivalently the difference in elution volume between marker 
and particle peaks) for polystyrene standards can be ~ s e d . ~ , ~ , ’ ~  For such con- 
ditions, 

(7) 

where Mu and b are calibration constants, and D, is the particle diameter. The 
normalized differential particle size distribution 4(D,) is related to W ( y )  by 

y = M u  lnD, + b 

d Q  d y  __ ___ d Q  

where D is the cumulative or integral distribution function whose y derivative 
yields W(y).  Thus, substitution from eq. (7) gives the normalized distribution 
in terms of W ( y )  as 

The solution of eq. (6’) for W(y)  involves two problems. First, it is necessary 
to represent the instrument spreading function by an approximate function and 
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to determine the numerical values for its parameters. The second problem in- 
volves the choice of an appropriate mathematical technique for solving the in- 
tegral eq. (6’). A critical feature to be shown by the present analyses is the highly 
nonlinear conversion between N ( y )  and W ( y )  in eq. (4’). This necessitates ac- 
curate fitting of the chromatogram, especially in the small particle size region, 
and leads in most case to problems of ill-conditioning. 

Methods selected for solving eq. (6’) or (6) followed variations of standard 
techniques developed for GPC analysis (e.g., see ref. 6 for a review) and can be 
broadly classed as integral or numerical. 

CRLCULRTEO PFlRTlCLE SIZE DISTRIBUTION OF R 
15/1 NIXTURE OF PS-88oFI RND PS-176OR 

PRRTICLE OIRNETER IN RNGSTROHS 
NORMRLIZED PRRTICLE SIZE DISTRIBUTION 

Fig. 9. Calculated PSD for synthetic mixture of Fig. 8. Area ratio is 35:l 

CHROflATOGRAfl OF A 

DIFFERENCE IN ELUTION TIflE flIN 

Fig. 10. Experimental (-) and calculated (+) PS1 chromatogram using the second iterative 
method of Ishige et al.23 
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INTEGRAL METHODS 

As indicated, the first step in solving eq. (6’) involves fitting the kernel function 
In the special case of Gaussian instrument spreading, the kernel G ( V , y ) .  

function can be represented by 
1 (V - Y ) 2  

G ( V J )  = 0’/2 exp [- 2u2 I 
where u is the standard deviation of the distribution and is given by the square 
root of the second moment of the normalized chromatogram of the single species. 
In cases where eq. (9) holds, the natural method of solution of eq. (6’) involves 
an expansion of F( V )  in terms of the Hermite polynomials and polynomial ex- 
pansion for W(y).17 The coefficients of the polynomial are determined by taking 
moments of the chromatogram and invoking the orthogonality condition. 

Figure 3 shows a typical monodisperse chromatogram for the polystyrene 
standards compared to calculations from eq. (9) for two different u values. It 
is clear that the single-species chromatogram is not adequately represented by 
eq. (9). Nonetheless, the method was applied using an average value of u equal 
to 0.44 ml. Computation for the neoprene and polydisperse polystyrene samples 
showed improved fitting of the chromatogram with increased numbers of poly- 
nomial terms. However, an upper limit occurs beyond which increased terms 
lead to oscillations in the distribution function. The number of terms leading 
to the instability increases with increased polydispersity of the sample. 

Figure 4 shows the fit to the chromatogram which occurs for a five-parameter 
Hermite expansion for the PS1 sample, and Figure 5 shows the resulting PSD 
calculation as compared to the histogram determined from electron microscopy. 
Similar results occurred for the neoprene sample, and in both cases small errors 
in the chromatogram fit in the small-particle region resulted in larger errors in 
the predicted number of small particles. This is a reflection of the small values 
for Rext in eq. (4’) for the small particles. 

CALCULATED PRRTICLE SIZE DISTRIBUTION OF R 
PSOl SRMPLE 

P.0 5.0 8.0 11.0 14.0 17.0 20.0 23.0 Z~.OXIG 

PRRTICLE DIRKTER I N  RNGSTROMS 
Fig. 11. Calculated PSD for PS1 from chromatogram of Fig. 12 compared to experimental histo- 

gram. 
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CHlrnTOORAn OF R 
PSDl W L E .  

DIFFERENCE I N  ELUTION T I E  . HIN 

TURBIDITY VS DIFFERENCE IN ELUTION TIME 
Fig. 12. Experimental (-) and calculated (+) PS1 chromatogram using modified method described 

in text. 

CRLCULRTEO P M T I C L E  S I Z E  OISTRIBUTION OF R 
PSOI SWPLE. 

PRRTICLE OIWETER I N  W X T R M I S  

NORMRLIZED PRRTICLE SIZE DISTRIBUTION 
Fig. 13. Calculated P S D  of Fig. 14 compared to experimental histogram. 

Recently, Provder and Rosenlg suggested a general statistical spreading 
function to account for skewed single-species chromatograms. The function 
coefficients describe symmetrical axial dispersion, skewing, and flattening of 
single-species chromatograms. However, the tailing at  both ends of monodis- 
perse HDC chromatograms is such that more than six coefficients would be 
needed. The HDC single-species chromatograms are nearly symmetrical; and, 
since the small particle region is the most important to fit, the following ex- 
pression was used instead: 
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Cl.IRrnTODRW OF R 
15/1 f l lXTURE OF P588[xI W PS17WFl. 

DIFFERENCE I N  ELUTION TIME , MlN 

TURBIDITY VS DIFFERENCE I N  ELUTION TIME 
Fig. 14. Calculated (+) chromatogram for synthetic mixture 151 by number of 88-nm and 176-nm 

polystyrene standards, (-) synthetic chromatogram. 
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Fig. 15. Calculated PSD for Fig. 16. Area ratio is 201. 

Substitution of eq. (9') into eq. (6') along with the polynomial expansion of W(y)  
given by 

n 

i = O  
WY) = exp [ - P ~ ( Y  - C Ri(y -YO)' (10) 

yields the following expression for F (  V): 
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Fig. 16. Calculated (+) chromatogram for 1:l synthetic mixture of 88-nm and 176-nm standards, 
(-) synthetic chromatogram. 

where the $1 are the binomial coefficients; r(g) is the gamma function; p and 
yo are the reciprocals of the standard deviation and mean of the chromatogram, 
respectively; b, is the coefficient defined by eq. (9’) to fit the chromatogram of 
a single species; and 1 is given by 

1 
1 2 = p 2 + -  

202 

For eq. (9’) the coefficients used were bo, b4, b8, and b16, with values 1.0, 0.1, 
1.2 X and 4.5 X respectively. Figure 3 shows the fit obtained for a 
88 nm standard. The coefficients R,, from which the distribution function W(y) 
is obtained, were evaluated by minimizing the square of the error between the 
calculated and experimental chromatogram for the number of terms n that were 

CRLCURTED PARTICLE SIZE DISTRIBUTION OF A 
1/1 MIXTURE OF PS880R RNO PS176oR. 

PRRTICLE DIAMETER IN RNCSTROflS 
NORMRLIZED PRRTICLE SIZE DISTRIBUTION 

Fig. 17. Calculated PSD from Fig. 18. Area ratio is 1.5:1 
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PARTICLE DULIETER , 1 

Fig. 18. Relative signal with respect to an equal number of nonabsorbing 30-nm particles at dif- 
ferent wavelengths. Refractive index of medium and particles taken as 1.35 and 1.70, respective- 
ly. 

used. As with the Hermite polynomials method, this technique leads to a 
maximum number of terms beyond which oscillations appear. 

This approach was applied to the neoprene and PS1 samples as well as to a 
synthetic mixture comprised of two monodisperse sizes, 88 and 176 nm, in a 15:l 
number ratio. Results for the PS1 and synthetic mixtures are shown in Figures 
6 to 9. As can be seen, the method gives PSD values that compare favorably to 
the electron microscopy results for broad distributions, and the fit of the chro- 
matogram is good. However, the bimodal distribution was not as closely pre- 
dicted. Since the method is based on the assumption of a continuous distribution 
function, it is more appropriate for well-behaved polydisperse systems. For 
discontinuous distributions, it seems more appropriate to employ numerical 
methods since no analytic function is appropriate to represent such discon- 
tinuities. 

NUMERICAL METHODS 
The earlier numerical methods used for solving Tung’s dispersion equa- 

tion17J9.20 did not lead to satisfactory results in all cases. For instance, for narrow 
distributions, oscillations result in the distributions which have been shown to 
be the result of the mathematical technique as well as detector noise. The 
method developed by Pickett et al.21 for GPC has been applied to HDC analysis22 
in conjunction with a Gaussian spreading function and found to be unsuitable. 
In this section, two numerical techniques previously used in GPC analysis will 
be evaluated along with a proposed modification to the second method presented 
by Ishige et al.23 
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Fig. 19. Effect of imaginary part of the complex index of refraction on the particle extinction cross 
section at 200 nm wavelength. Real part of refractive index for the particles and medium taken as 
1.70 and 1.35, respectively. 

Stoisits8J8 applied a least-squares method to calculate the relative amounts 
of mixtures of two monodisperse samples with results comparing favorably to 
the electron microscopy counts. However, the method assumed a prior knowl- 
edge of the particle sizes present in the mixture. An extension of this method 
to the neoprene and PS1 polydisperse systems was used. Simpson's rule was 
employed, assuming a number of sizes with equally spaced elution volumes, to 
evaluate the integral. The function Gj ( V )  was again approximated by eq. (9'), 
and the following features were observed. When no restrictions to the Wj values 

TABLE I1 
Mixture Rule for Index of Refractiona 

Theoretical 
i. Newton 

ii. Lorentz-Lorentz 

iii. Wiener - 

4 2  = 4 1 4  + $ 2 4  
n12-1 n ; -1  n:-1 
& + 2  n ; + z  n:+2 
& - n ;  n:-n; 
n:z + 2n; n: + 2n; 

log n12 = 62 log n2 + 41 log nl 

n12 = 41n1+ 4zn2 

42 + - 41 -=- 

41 

Empirical 
i. Lichtenecker 

ii. Avogadro-Biot 
Beer-Landolt 
Christiansen- 
Wintgen 

a From reference 27; n12 = refractive index of dispersion; nl = refractive index of particle; n2 = 
refractive index of medium; 61 = volume fraction of particles; $2 = volume fraction of medium. 
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Fig. 20. Effect of imaginary part of the complex index of refraction on the relative number signal. 
Same parameters as Fig. 22. 

were applied, negative numbers for the distribution resulted when the number 
of sizes assumed exceeded a critical value, depending on the degree of polydis- 
persity. This result is reminiscent of the severe oscillations reported by other 
investigators.l7 Since only nonnegative W, values are meaningful, an alternate 
approach was used by setting the minimum W, to zero; however, the oscillation 
problem was not eliminated. The fit of the chromatogram using this approach 
was good, but the PSD values did not compare fa~orably.~ 

Two methods have been proposed by Ishige et al.23 which involve calculating 
F ( V )  from an initial guess of W ( y )  and iteratively correcting W ( y )  according 
to the comparison between calculated and experimental chromatograms at each 
iteration level. In the first method the correction is based on a difference, while 
for the second it is based on the ratio between the computed and experimental 
chromatogram. The first method can lead to oscillations at  both ends of the 
distribution function, while the attractive feature of the second method is the 
elimination of the possibility of negative W(y) .  23 The latter results from the 
fact that any chromatogram F (  V )  always has a broader distribution than the 
input W(y) .  Hence, if the calculated chromatogram F* is broader than F ,  the 
assumed WJ,L must be sharpened to give a closer response to F.  The corrected 
W,,l is given by W,+l,l and is calculated as follows23: 

where i refers to the elution volume considered and j is the level of iteration. 
Although negative Wj,i values are impossible by this method, convergence is not 
guaranteed. The method was applied to the polydisperse samples, and since 
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Fig. 21. Differential refractive index of polystyrene standards in water at different concentrations. 
(0) 88 nm; ( A )  91 nm; (0) 109 nm; (v) 176 nm; (0) 234 nm; (0) 357 nm. 

it is completely numerical, data were used directly from the monodisperse 
chromatograms, eliminating the need for a specific spreading function to char- 
acterize them. Because of the limited number of monodisperse chromatograms, 
they were used to represent the spreading behavior for particle ranges as follows: 
For particles less than 90 nm, the 88-nm standard was used; in the range of 90 
to 130 nm, the 109-nm standard was used; in the range of 130 to 200 nm, the 
176-nm standard was used; and for sizes larger than 200 nm, the 234-nm standard 
was used. 

Figures 10 and 11 illustrate results for the PS1 sample where a good fit  of the 
chromatogram was accomplished; however, the PSD does not compare favorably. 
This was especially true in the small-particle region, which again corresponds 
to the region of high detector sensitivity. As indicated, this method has the 
advantages of using experimental monodisperse chromatograms and eliminating 
the oscillation problem. The principal shortcoming is the one-to-one correction 
used at each reading. This assumes that the contribution at each elution volume 
is due only to the particle eluting at  the volume and is independent of the other 
particles. Inclusion of contributions due to neighboring sizes is possible by a 
geometric averaging of each species c~rrect ion.~ The weighting exponents are 
taken from the relative contributions of the sizes within f 2 a  of the elution volume 
considered and then normalized to unity for the sum of the exponents. The 
correction to W,.i is thus written as 

where the exponent Yi ,k  is given by 
Yi+k 

2 Y i i k  
Yi,k  = ~ 
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7 

Fig. 22. Effect of refractive index of particles on the number relative signal a t  two wavelengths: 
(-) 500 nm; (- - -) 300 nm. Medium refractive index is 1.35. 

and in eq. (12’) the symbol II stands for the continued product. The number 
of symmetrical terms n’ about Fi was chosen according to the single-species 
spread to include points located within f 2 a  of the elution volume of interest. 
Figures 12 and 13 illustrate the chromatogram fit and PSD achieved for the PS1 
sample by this method. The fit is seen to be reasonably good for the larger 
particles. Similar results were obtained for the neoprene latex. Again it must 
be emphasized that a small mismatch in the small-particle range results in an 
appreciable error for the PSD for that region. 

Figures 14 and 15 are respectively the chromatogram and PSD obtained for 
the 15-to-1 synthetic mixture of the monodisperse 88-nm and 176-nm standards. 
In this case detection of peak resolution has been achieved and the calculated 
ratio given by the areas under the chromatogram is now 20:l. Figure 16 shows 
the chromatogram for a 1-to-1 by number mixture of 88-nm and 176-nm stan- 
dards where, as a result of the signal detector characteristics, the smaller-particle 
population shows only as a small shoulder in the output despite the fact that the 
smaller particles represent 50% of the total particle numbers. Figure 17 illus- 
trates that the iterative method predicts the presence of the two populations 
although the number ratio of 176-nm to 88-nm particles has changed to 151. 

METHODS FOR IMPROVED SIGNAL RESOLUTION 

The calculations for particle size distribution demonstrate the critical role of 
eq. (4’) in controlling both instrument resolution and dispersion calculation 
sensitivity. The results presented point to the need for improved signal char- 
acteristics as well as possible improvements in column dispersion through 
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Fig. 23. Comparison between number relative signals for differential refractometric and photo- 
metric detection. Real refractive indices of particle and medium are 1.70 and 1.35. Wavelengths 
are 200 nm for photometer and 500 nm for refractometer. 
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PARTICLE DIAMETER , 8 
Fig. 24. Comparison for weight relative signals from differential refractometry and photometric 

detection. Parameters same as in Fig. 23. 

modified flow geometry and packing characteristics. In this section we shall 
discuss calculations which have been addressed to the improvement of signal 
resolution. A later publication will be addressed to experiments currently in 
progress concerning the latter of the above approaches. 
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Improvements in the detection system have been suggested previously, such 
as use of a photometer with a shorter wavelength8 to detect relatively small 
particles. Also, as in GPC, the use of differential refractometry has been shown 
to produce a better signal than the one obtained with a 254-nm p h ~ t o m e t e r . ~ ~  
A detailed analysis of such potential improvements is necessary in order to de- 
termine the advantages either of the suggested methods may offer. Since at  
wavelengths less than 254 nm, polystyrene is likely to be an absorbing species, 
the theoretical evaluation of such a detecting device must account for this. 
Consider first the improvement possible with shorter wavelength turbidity. 

IMPROVEMENTS IN THE TURBIDITY SIGNAL 

A series of calculations were made to determine the effects of parameter 
variations on the optical density signal intensity as predicted by Mie theory. The 
parameters studied were wavelength of the incident beam, real refractive index 
and imaginary refractive index of the particles, and particle size. Optical density 
was calculated from eq. (1) where now, to account for absorption, the more 
general expression for Rext was used, wherelo 

1 2  m 
I\ 

Rext = - C (2n + l)Re(a, + b,) 
27r n = l  

The coefficients a, and 6, in eq. (14) are given elsewherelo in terms of the Bessel 
and Neumann functions. When the argument is complex, as it is for absorbing 
spheres, the computation of a, and b, is more conveniently accomplished by 
the method proposed by Aden.2s 

Calculations for the effects of source wavelength and variations in the refractive 
index for nonabsorbing spheres are illustrated elsewhere.5 The results showed 
that a decrease in wavelength and/or increasing the refractive index in general 
increases the scattering cross section, though a combination of small wavelength 
and large index of refraction shows a reversal for large particle sizes. From this 
result we conclude that by using shorter wavelengths, the absolute signal for small 
particles will be increased. However, for obtaining particle size distributions, 
the relative signal is of greater importance. 

Figure 18 is a plot of the ratio of the signal S ,  obtained for N particles of di- 
ameter D,, to the signal resulting from N particles of diameter 30 nm as a 
function of particle diameter for various wavelengths for nonabsorbing particles. 
The change of wavelength can be seen to have a small influence on the relative 
signal. Similar calculations for various refractive indices showed essentially no 
change in relative signal at  254 nm. The calculations were made for nonab- 
sorbing particles; however, some polymeric materials have shown appreciable 
absorbance a t  certain wavelengths in the UV region, including polystyrene.26 
This possible effect can be accounted for in terms of the imaginary part of the 
refractive index. Calculations of the extinction cross section for different values 
of the imaginary part of the refractive index, which includes the range from weak 
to strong light absorbers, are shown in Figure 19. These calculations illustrate 
that the extinction cross section of the smaller particles is greatly enhanced while 
that of the larger ones slightly decreases. The first feature suggests better de- 
tection of the smaller particles, while the second feature suggests an improvement 
of the relative signal. Figure 20 is an illustration of this very last fact which we 
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believe is of transcendental importance for the determination of PSD in 
HDC. 

DIFFERENTIAL REFRACTOMETRY DETECTION 

Latexes with a refractive index different from the medium can be detected 
by monitoring the change of refractive index of the exiting system. The rela- 
tionship between the difference in refractive index and the concentration of the 
dispersion has been treated theoretically and empirically by several investigators. 
The various mixture rules shown in Table I1 are, however, all limited to the case 
where the relative diameter a (a  = 7rDp/X) is small and the refractive index ratio 
is near unity.27 Such restrictions, similar to the ones of Rayleigh scattering, limit 
the applications to a small fraction of the colloidal range. Zimm and Dandliker28 
derived a more general refractive index expression based on the Mie theory. 
Their expression for the dispersion refractive index n12 as a function of the 
particle refractive index n l  reads 

where c is the weight concentration in g/cm3, p2 is the particle density, and 
Re(j1)1800 is the real part of the complex amplit.ude function (jl)1800 which per- 
tains to the light scattering in the forward direction of the primary beam char- 
acterized by the angle 8 = 180°.26 The expression for O'1)1800 from the Mie 
theorylO is 

with an and b, as mentioned earlier. Equation (15) does not contain the re- 
striction that a be small and allows calculation of the effect of light scattering 
on the refractive index of a scattering colloidal dispersion. The quantity dnlzldc 
is essentially constant for values of c below 1 X 

Figure 21  shows experimental results obtained for the monodisperse poly- 
styrene standards ranging from 88 to 357 nm in diameter, using a Brice-Phoenix 
differential refractometer.5 The wavelength of light used was 546.1 nm, hence 
the maximum value of a was 2.0. In this range, linear An-c behavior is expect- 
ed27 and is shown by these data. Measurement scatter is due most likely to 
adsorbed surfactant and limited instrument resolution (differences measured 
only to the fifth place). The straight line through the data was calculated using 
the Lorentz-Lorentz equation from Table 11, which is the limiting form of eq. 
(15) for very small spheres. The favorable comparison between the experimental 
results and calculated values indicate the reliability of the theory as has been 
similarly observed by others.29 

Figure 22 illustrates the effect of wavelength on the refractometer relative 
signal intensity. A comparison with the turbidimetric counterpart is shown in 
Figure 23, where nonabsorbing as well as absorbing particles are considered. 
These calculations illustrate that differential refractometry shows a less dramatic 
dependence on particle size than turbidimetry of nonadsorbing particles. 
However, when the particles become absorbing, turbidimetric detection shows 
a dramatic change to the extent of matching and even improving relative signal 
dependence on particle size. 

g / ~ m ~ . . " ~  
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Since it is customary in HDC to make injections of samples with nearly the 
same solid content (0.01%), it is interesting to note comparisons of the relative 
signal based on the same weight of solids. Figure 24 shows this comparison for 
turbidimetric detection of absorbing and nonadsorbing particles and for 
refractometric detection. Although little apparent improvement is offered with 
turbidimetric detection of absorbing spheres over differential refractometric 
detection, it must be pointed out that the sensitivity of available differential 
refractometers is limited to RIU (refractive index units). Since the solid 
content of the injected sample is on the order of 0.01 wt-% and further dilution 
of nearly 20 times occurs by dispersion before the sample enters the signal de- 
tection device, the signal intensity will be very weak. This can also be concluded 
from Figure 24 and points to the need for higher concentrations with the possi- 
bility of attendant clogging problems with refractometry. 

SUMMARY AND CONCLUSIONS 
The results of the calculations presented in this paper can be summarized as 

follows: 
1. The assumption of Gaussian spreading along with a polynomial expansion 

for the distribution function enabling the application of the Hermite orthogonal 
polynomials gives inaccurate particle size distributions and inflates the distri- 
bution in the direction of smaller-diameter particles. This is a result of the 
particle scattering cross section-diameter relationship and also the non-Gaussian 
spreading in the monodisperse standards. 

2. An integral method assuming a non-Gaussian spreading function and a 
polynomial expansion to represent the distribution function (with coefficients 
determined by a square error criterion) gives PSD values in reasonable agreement 
with measured values for polydisperse systems of broad distribution. However, 
for systems with discontinuities in the distribution function, the PSD does not 
compare favorably. 

3. The numerical least-squares method with linear programming showed an 
oscillation problem similar to that of previous GPC studies which makes the 
method unreliable for PSD determination. 

4. The second method of Ishige et al. eliminates negative values in the dis- 
tribution function as well as oscillation problems. However, PSD values are still 
inflated toward small particles. 

5. A variation of the second method of Ishige et al. accounting for contributions 
to the signal of neighboring sizes gives good results for broad and narrow distri- 
butions as well as for discontinuous distributions. 

6. Theoretical analysis of the different detection methods available suggests 
that photometric detection at  wavelengths where the latexes are light absorbers 
provides a relative signal comparable to that obtained from a differential re- 
fractometer. However, an at  least onefold increase in the amount of latex in- 
jected, as compared to the amount necessary with a photometer, is needed to 
provide a good signal in a differential refractometer. These higher concentra- 
tions of injected latexes may eventually lead to frequent clogging problems in 
the HDC columns. Therefore, variable-wavelength photometric detection ap- 
pears more attractive. 

This work is being supported by a grant from the National Science Foundation, Number ENG 
77-07041, and by funds from the Emulsion Polymers Institute Industrial Liaison Program. 
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